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Abstract

Due to the missing depth cues, it is essentially ambigu-
ous to detect 3D objects from a single RGB image. Existing
methods predict the 3D pose for each object independently
or merely by combining local relationships within limited
surroundings, but rarely explore the inherent geometric re-
lationships from a global perspective. To address this issue,
we argue that modeling geometric structure among objects
in a scene is very crucial, and thus elaborately devise the
Holistic Pose Graph (HPG) that explicitly integrates all ge-
ometric poses including the object pose treated as nodes
and the relative pose treated as edges. The inference of
the HPG uses GRU to encode the pose features from their
corresponding regions in a single RGB image, and passes
messages along the graph structure iteratively to improve
the predicted poses. To further enhance the correspondence
between the object pose and the relative pose, we propose
a novel consistency loss to explicitly measure the deviations
between them. Finally, we apply Holistic Pose Estimation
(HPE) to jointly evaluate both the independent object pose
and the relative pose. Our experiments on the SUN RGB-
D dataset demonstrate that the proposed method provides a
significant improvement on 3D object prediction.

1. Introduction
3D object prediction from a single RGB image is ex-

tremely challenging, which estimates 3D bounding boxes
for each object in a scene. The main difficulty of this task
is to predict the depth information that a single RGB im-
age loses during the projection from 3D real world to the
2D image. How are humans capable of making precise esti-
mations when looking at an image? Humans not only have
rich prior knowledge about the category-specific object, but
also can leverage the geometric relationships among differ-

(a) (b)

Figure 1. The effect of using geometric relationships. (a) some
results from our baseline method [27], which make inaccurate es-
timation about the relative pose. (b) our model makes more rea-
sonable prediction after using HPG.

ent objects in a scene to alleviate the uncertainties of predic-
tion for each object. Existing methods [12,14,16,17,20,37]
consider using the prior knowledge to reason about the ob-
ject pose independently but it is rough sometimes. As a
result of the inevitable deviation of prediction per object,
there will be a certain amount of inaccurate estimations, as
shown in Figure 1 (a), which cause humans’ misunderstand-
ing about the scene. These results mainly are caused by the
improper relative pose estimation and could have been ef-
fectively avoided by using the geometric relationships.

Inspired by the above observations, we seek to leverage
the geometric relationship to add more constraints on each
object for more reasonable and precise estimation. Mod-
eling the geometric relationships explicitly will help us ex-
clude many impossible solutions in the 3D space. For exam-
ple, as shown in top of Figure 1 (a), we should have gotten
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Figure 2. Overview of our proposed method. We firstly estimate
the 3D camera pose, object pose and relative pose, according to the
whole image and 2D detections. As shown above, the blue nodes
define the object pose and the green edges define the relative pose.
We build the Holistic Pose Graph and pass messages along this
graph topology. Combining the camera pose and the final object
pose, we can get all the 3D bounding boxes in the image on the
basis of the camera system.

the cues that two desks in the image have the same orien-
tation to avoid the wrong estimation. Moreover, we try to
utilize the holistic geometric relationships rather than only
consider pair-wise relationships, in order to better main-
tain the consistency between the 2D image and the 3D real
world. Consequently, we devise the Holistic Pose Graph
(HPG) to efficiently model geometric structure among ob-
jects in a scene. As shown in Figure 1 (b), more reasonable
predictions are obtained after using HPG.

Figure 2 shows the overview of our method. We firstly
estimate the camera pose from the global features of the
whole image. After detecting the 2D objects, we crop
the corresponding regions of the image to extract the ob-
ject pose features. Specifically, the relative pose features
are composed of the related object pose features, the vi-
sual features of the union region in the image, and the 2D
relative geometric features computed from the coordinates
of 2D bounding boxes. We use these features to initialize
the graph nodes that define the object pose and the edges
that define the relative pose, and further build the HPG. By
passing messages along this graph topology iteratively, both
nodes and edges integrate holistic geometric information
and update their state simultaneously. Finally, we combine
the camera pose and the final object pose to parametrize the
3D bounding boxes. To further estimate reasonable scene
layout, we propose the consistency loss based on the in-
herent constraints between the object pose and the relative
pose, which can enhance the correspondence between them.

To evaluate the performance of 3D object prediction, ex-
isting metrics only treat each prediction independently by

calculating the 3D Intersection over Union (IoU) between
the predicted 3D bounding box and ground truth, but fail
to treat all objects in the image as a whole. Under these
metrics, the results in the top row of Figure 1 (a) and (b)
can not be distinguished because all the objects’ IoU are
above the preset threshold. However, the results of Figure
1 (b) are indeed more rational in human cognition. Conse-
quently, we introduce Holistic Pose Estimation (HPE) that
more holistically evaluates both the 3D bounding box of the
independent object and the relative pose of each pair of ob-
jects.

We evaluate our model 1 on SUN RGB-D dataset [32]
to verify the effectiveness of the Holistic Pose Graph. Re-
sults show that our proposed method outperforms previous
methods both on the existing metrics and HPE.

2. Related Work

3D object prediction from a single RGB image is ex-
tremely challenging. Early works [2, 22, 39–41] based on
scene geometry utilize the 3D world prior and scene gram-
mar to estimate 3D holistic scene. In recent years, many
learning-based methods focus on room layout estimation
[3, 26, 30, 42] and object pose estimation [4, 14–16, 27].
These methods combine the category-specific prior knowl-
edge and the visual appearance feature of the independent
object in a single RGB image to predict the 3D bounding
boxes. To address the 2D-3D ambiguity, state-of-the-art
methods propose various techniques to improve the perfor-
mance of 3D object prediction. Huang et al. [15] devise a
new parametrization of 3D bounding boxes to enforce the
2D-3D consistency. Huang et al. [14] propose an interme-
diate representation to bridge the 2D-3D gap. While con-
siderable improvements have been achieved, such methods
generally make independent predictions per object and ig-
nore the importance of geometric relationships.

Modeling 2D relationships can assist us in better un-
derstanding the attributes of objects and the holistic scene.
The exploitation of relationships has demonstrated benefits
for a bunch of computer vision tasks both in 2D and 3D.
2D relationships mainly include semantic relationships and
geometric relationships. For 2D object detection, [13, 24]
use semantic relationships to improve the performance on
classification tasks. [35, 36, 38] similarly extract semantic
relationship features for the task of scene graph generation.
For 3D tasks, [5–7, 9, 10, 18, 21, 25] pursue reasoning about
geometric relationships. Focusing on the 3D prediction task
relevant to this study, Nie et al. [27] implicitly encode multi-
lateral relation in each object’s surroundings. Kulkarni et
al. [20] consider the pairwise relations to train the object
pose module and the relation module respectively. Different
from the above methods, our approach explicitly encodes

1Our source codes are available at http://vipl.ict.ac.cn/resources/codes.
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the holistic geometric relationships, and models geometric
structure for graph inference to enhance the correspondence
between the objects and relationships.

Existing metrics on 3D object prediction from a sin-
gle RGB image mainly come from the SUN RGB-D bench-
mark [32], with following adjustment of the 3D IoU thresh-
old from 0.25 to 0.15 in Huang et al. [15], taking account of
the challenge of missing depth information in RGB-based
input. [15] further develops 3D Box Estimation to reflect
the ability of mapping 2D ground truth bounding boxes to
3D bounding boxes by excluding the influences of the 2D
detector. In order to evaluate the performance of both the
independent object and the relative pose of each pair of ob-
jects, we introduce Holistic Pose Estimation based on the
graph structure to compute the accuracy for ⟨ subject pose,
relative pose, object pose ⟩ triplets.

3. Approach
In this work, we devise the Holistic Pose Graph for mod-

eling geometric structure among objects in a scene to rea-
son about the object pose and relative pose. We illustrate
our framework in Figure 3. The details are introduced in
the following sections.

3.1. Holistic Pose Graph

Graph representation. G = (PV , PE) represents all
geometric poses of the input image. The node Pv ∈ PV

defines the object pose, and the edge Pe ∈ PE defines the
relative pose. We parameterize the object pose same as the
prior work [15] and the relative pose with similar descrip-
tion. The object pose Pv is described by four parameters
(δ, d, ϕ, s). The δ ∈ R2 defines the offset between the 3D
projected center and the center of the 2D bounding box,
d ∈ R is the distance between the camera center and 3D
object center, ϕ ∈ R3×3 represents the orientation of 3D
bounding box, and s ∈ R3 is the length, width, and height
of 3D bounding box. We build the center of the world sys-
tem located at the camera center with its y-axis perpendic-
ular to the floor and its x-axis toward the camera follow-
ing [27]. Thus, we can use the pitch and roll angles (α, β) to
represent the camera extrinsic parameters R(α, β) ∈ R3×3.
We can formulate the 3D bounding box through the cam-
era intrinsic parameters K ∈ R3×3, camera extrinsic pa-
rameters R(α, β) ∈ R3×3, the center of 2D bounding box
c ∈ R2 and the corresponding object pose. Firstly, the cen-
ter of 3D bounding box C ∈ R3 can be computed as

C = dR(α, β)−1 K−1[c+ δ, 1]T

∥K−1[c+ δ, 1]T ∥2
. (1)

Combining C, ϕ and s can then decide a 3D bounding box
B ∈ R3×8 in the world system. The relative pose Pe has
a similar parametrization (δij , dij , ϕij , sij) with Pv , which
represents the relative pose between subject i and object j.

Graph initialization. We utilize the 2D detection results
to crop the detected regions, and then use ResNet-34 to ex-
tract the object pose features Pv . We concatenate each pair
of object pose features, the 2D relative geometric features g,
and the corresponding union region’s visual features u en-
coded by ResNet-34 to represent the relative pose features
P ij
e , which can be formulated as [P i

v, P
j
v , g, u]. The g is

computed from the 2D bounding box of subject i and object
j as in [19]. Specifically, xi, yi, wi, hi define a 2D bounding
box of object i, BI , BU define the intersection region and
the union region respectively, and f() is an FC layer to in-
crease the dimension of the 2D relative geometric features.

g = f([
xi − xj√
wjhj

,
yi − yj√
wjhj

,

√
wihi

wjhj
,
wi

wj
,
hi

hj
,
BI

BU
]). (2)

3.2. Message Passing

We build the HPG as a fully connected graph that mod-
els all geometric relationships between each pair of objects.
GRU [1] is employed to encode features effectively for its
high efficiency as advocated in [24, 35]. To integrate the
holistic geometric information, we pass messages along the
graph structure to iteratively update the node GRUs and
edge GRUs states. The state of the two kinds of GRUs is
initialized by the object pose features Pv and the relative
pose features Pe, respectively. Each node and edge in HPG
maintain its state in its corresponding GRU unit, where all
nodes share the same GRU weights, and all edges share the
other set of GRU weights. The illustration of the message
passing mechanism is shown in Figure 4. During each mes-
sage passing iteration, each node updates its state with the
messages from all related edges, and each edge updates its
state with the messages from its subject node and object
node. As in [35], we denote the state of node GRU and edge
GRU as hi, hij , the i-th node message as mi, and the edge
message from the i-th node to j-th node as mij . Specifi-
cally, the mi and mij are formulated as:

mi =
∑
j:i→j

σ(wout[hi, hij ])hij +
∑
j:j→i

σ(win[hi, hji])hji,

(3)

mij = σ(wsub[hi, hij ])hi + σ(wobj [hj , hij ])hj . (4)

In above equations, [, ] is a concatenation operation, and
σ represents a sigmoid function. wout, win, wsub, wobj are
learnable weights. After the process of message passing,
we use four FC layers to individually predict the four pa-
rameters (δ, d, ϕ, s) of object pose Pv . Similarly, we also
use the other four FC layers to get the four parameters
(δij , dij , ϕij , sij) of relative pose Pe.
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Figure 3. HPG: The framework of our method. There are two branches of our network to predict the camera pose and each object pose
respectively. Firstly we adopt the ResNet-34 [11] architecture to extract the global features for estimating the camera pose. According to the
results of 2D object detection, we crop the detected object proposals to extract object features initializing node GRU, and then concatenate
each pair of object features and the union region’s visual features to extract relationship features initializing edge GRU for building HPG.
With HPG, we then pass messages along the graph structure and update the state of each node and edge iteratively. By imposing direct
supervisions on the output object pose and relative pose respectively, a consistency loss is further proposed to build correspondence between
the two kinds of poses. Finally, we combine the camera pose and each object pose to estimate the 3D bounding boxes in the scene.
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Figure 4. An illustration of the Message Passing mechanism.
The node message is from the inbound and outbound edge GRUs
and its own state. The edge message is from the subject and object
node GRUs and its own state.

3.3. Loss Functions

As shown in Figure 3, HPG finally outputs the object
pose and relative pose, which we directly use their ground
truth to supervise. Besides, we further propose the consis-
tency loss for imposing supervisions on the two pose pre-
diction modules to maintain their correspondence. Con-
sequently, we define three loss functions as Lobj (object
pose), Lrel (relative pose), Lcon (consistency). As noted
in [15, 28], directly regressing absolute angles or depth is
error-prone, which magnifies the variance of predicted vari-
ables. Thus, we set the learning way of {ϕ, d} as a combi-

nation of classification and regression, but directly regress
{δ, s} because of their inherent low variance. Lobj and Lrel

are defined as:

Lobj =
∑

x∈{δ,s}

λreg
x Lreg

x +
∑

y∈{ϕ,d}

(λreg
y Lreg

y + λcls
y Lcls

y ),

(5)

Lrel =
∑

x∈{δij ,sij}

λreg
x Lreg

x +
∑

y∈{ϕij ,dij}

(λreg
y Lreg

y +λcls
y Lcls

y ).

(6)
Lcls
∗ is softmax loss function and Lreg

∗ is smooth-L1 loss
function. λ∗

∗ are the weights for corresponding loss func-
tions. Due to the two kinds of predicted pose in the
same scene, there is inherently correspondence between
them. For a pair of object pose (P i

v , P j
v ) and their rela-

tive pose P ij
e , they are theoretically equivalent. To explic-

itly measure the consistency between (P i
v , P j

v ) and P ij
e , we

formalize P ij∗
e using its related (P i

v , P j
v ), represented as

(δ∗ij , d
∗
ij , ϕ

∗
ij , s

∗
ij) = (δj − δi, dj − di, ϕj − ϕi, sj/si). For

Lcon, we denote h(, ) as its function which calculates the
deviation of P ∗

e and Pe in the same way as the former loss
fuction Equ. 6:

Lcon = h(P ∗
e , Pe). (7)

Finally, we also adopt the cooperative loss Lco from [15]
and the global loss Lg from [27], which add physical con-
straints and enhance the consistency. In summary, the loss
functions for the whole network training can be written as:
L = λobjLobj+λrelLrel+λconLcon+λcoLco+λgLg. (8)

λ∗ are the weights of above five loss functions.
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4. Holistic Pose Estimation
We propose HPE for evaluating the performance of

both the object pose and the relative pose. We evalu-
ate the 3D bounding box for object pose by computing
the IoU between predicted boxes and ground truth boxes,
and further design the geometric relationships similarity
S to evaluate the relative pose. S can be denoted as
{SLocθ , SLocl , SOri}. Specifically, given a pair of 3D
boxes for subject i and object j, we denote their relative
location as Locij ∈ R3, which is the difference vector com-
puted from the centers of the two 3D boxes, and denote their
relative orientation as Oriij ∈ R, which represents the ab-
solute deviation of rotation angle around the y-axis between
the two boxes.

SLocθ measures the angle similarity between the pre-
dicted relative location Locpreij and ground truth relative lo-
cation LocGT

ij as formulated:

SLocθ
ij =

Locpreij × LocGT
ij

|Locpreij | × |LocGT
ij |

. (9)

SLocl
ij measures the length similarity between the two

relative locations as:

SLocl
ij =

∣∣∣ |Locpreij | − |LocGT
ij |

|LocGT
ij |

∣∣∣. (10)

SOri
ij describes the similarity between the predicted rela-

tive orientation Oripreij and ground truth relative orientation
OriGT

ij as:

SOri
ij = |Oripreij −OriGT

ij |. (11)
As shown in Figure 5, (a) denotes ground truth, (b) and

(c) are two supposed predictions. For human evaluation, (b)
is obviously better than (c), but prior metrics only consider
the accuracy of each object box and can not distinguish the
two predictions. Under HPE, we can distinguish the above
two predictions by further computing the accuracy of each
geometric relationship. Vividly, we not only limit the pre-
dicted boxes on the surrounding region of ground truth, but
also add the constraint on the relative pose just like connect-
ing each pair of objects with a flexible rod to maintain the
holistic scene layout.

Specifically, we set the relative threshold εrel as
{0.5, 0.5, 30◦} in the experiments, corresponding to
{εLocθ , εLocl , εOri} individually. We regard the predicted
geometric relationship as true positive when {SLocθ ≥
εLocθ , SLocl ≤ εLocl , SOri ≤ εOri}. The computation
of HPE can be formulated as:

Acc =

∑
i,j∈PV

C(P i
v, P

j
v )

N
. (12)

where C(, ) is a discriminant operation, and hence
C(P i

v, P
j
v ) describes whether the P ij

e is true. We design

1
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Figure 5. An illustration of HPE. (a) shows the 3D ground truth
boxes. (b) and (c) are two supposed prediction results. We show
the IoU and the similarity for each box or edge. At the bottom of
each prediction, we show the number of true predicted objects and
relationships.

two types of C(, ) for different aims. One is only consid-
ering the geometric relationships similarity, and the other
further demands the IoU of subject and object both meet-
ing their threshold. For computing Acc among the whole
test set, N denotes the number of PE . Moreover, we can
also compute Acc based on each image. Specifically, for
counting based on each image, we think it is a true image
prediction if the number of true positives discriminated by
C(, ) reaches half of the number of objects in the image.

5. Experiments
5.1. Experimental Setup

Datasets. We train our model and compare it with other
methods [14, 15, 27] on the SUN RGB-D dataset [32] in-
cluding 5285 training images and 5050 testing images. As
[27] we use the same train/test split and the object labels
provided in NYU-37 [31] for fair comparison.

Metric. We evaluate 3D object detection by the average
precision (AP) on NYU-37 object categories. Similar to 3D
object detection, we evaluate 3D box estimation using 2D
ground truth boxes as input only to test the ability of map-
ping 2D to 3D. Besides, we further compare our method
with prior works on our developed task of Holistic Pose Es-
timation (HPE). For all such metrics, we set the threshold
of 3D IoU to 0.15 as in [15].

Implementation. We train our 2D detector [29] on the
COCO dataset [23] and fine-tune it on SUN RGB-D [32].
The backbone of the image feature extractor for the whole
image and object proposal both are ResNet-34 [11]. We
jointly train our camera pose module and object pose mod-
ule with the ground truth of 2D bounding boxes. The an-
notations of the relative pose are from the ground truth of
the object pose, which is calculated same as P ∗

e mentioned
in Section 3.3. The settings about learning weights of loss
functions are introduced in the supplementary materials.

5.2. 3D Box Estimation

The performance of 3D object detection is determined
by both 2D object detection and 3D bounding box estima-
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Table 1. Comparisons of 3D object detection on SUN RGB-D dataset. The results of [15, 27] are cited from [27], which are trained on
NYU-37 object labels.

Method bed chair sofa table desk dresser nightstand sink cabinet lamp mAP
CooP [15] 57.71 15.21 36.67 31.16 19.90 15.98 11.36 15.95 10.47 3.28 21.77
Total3D [27] 60.65 17.55 44.90 36.48 27.93 21.19 17.01 18.50 14.51 5.04 26.38
Ours (w/o. HPG) 60.52 21.28 52.54 35.71 31.90 23.00 12.22 16.86 14.67 5.24 27.39
Ours 67.07 30.55 56.63 44.51 37.82 23.40 16.93 25.70 17.73 7.15 32.75

Table 2. Comparisons of 3D object detection on SUN RGB-D dataset. The results of [14, 16] are cited from their original papers, which
are trained with fewer object categories. We provide the results of our method and [27] on the common categories for comparison.

Method bed chair sofa table desk toilet sink shelf lamp mAP
HoPR [16] 58.29 13.56 28.37 12.12 4.79 16.50 2.18 1.29 2.41 15.50
PerspectiveNet [14] 71.39 34.94 55.63 34.10 14.23 73.73 34.41 4.21 9.54 36.91
Total3D [27] 60.65 17.55 44.90 36.48 27.93 44.24 18.50 4.93 5.04 28.91
Ours 67.07 30.55 56.63 44.51 37.82 60.97 25.70 13.32 7.15 38.19

tion. To more directly compare our proposed method with
existing methods, focusing on estimating the ability of map-
ping 2D image patches to 3D bounding boxes, we use 2D
ground truth boxes as input following [15]. Based on us-
ing mIoU for evaluation, we further compute the accuracy
(Acc) by setting the IoU threshold for the true positive. The
comparisons using both mIoU and Acc are reported in Table
4, which are trained on SUN RGB-D dataset with NYU-37
object labels. The results show that our model exactly im-
proves the ability of mapping the 2D plane to 3D real world.

5.3. 3D Object Detection

We compare our method with state-of-the-art methods
[14–16, 27] using the same metric as [27], where the mean
average precision (mAP) is computed with 3D bounding
box IoU. The comparison is shown in Table 1, where (w/o.
HPG) denotes our full model without HPG. The results
demonstrate the advantage of our method over state-of-the-
arts and the effectiveness of HPG. Besides, since [14, 16]
have used different categories, for fair comparison, we list
the common categories in Table 2. PerspectiveNet [14] pro-
poses a more effect 2D-3D mapping way than Total3D. The
2D-3D mapping way of ours is similar to Total3D, but the
key to our superior performance is to better utilize geomet-
ric relationships. Specifically, our HPG can be embedded
in other 3D object detection networks with proper modifi-
cation (such as CooP). More experiments results are listed
in the supplementary materials.

Existing 3D reconstruction methods [20,34] also predict
object pose. We compare our method with them by train-
ing our model on NYU v2 dataset [31] with six object cat-
egories and using the same metric referring to [20]. The
results are reported in Table 3. The prior works [20,34] pre-
train their model on SUNCG [33] dataset with 3D model
supervision, but our performance is close to them with-

out these extra supervisions. For fair comparison, we use
the NYU v2 dataset and the annotations from SUN RGB-
D dataset [32] to retrain 3D-RelNet [20] and Total3D [27]
without 3D model supervisions and any pretrained models.
To better distinguish our reproduced results and the corre-
sponding results reported in their original papers, we add
“*” for our reproduction. Our method significantly outper-
forms 3D-RelNet [20]* benefited from the utilization of the
camera system. Compared with the reproduced [27]* 2, we
also reach higher performance on object pose prediction.
5.4. Holistic Pose Estimation

In Section 4, we introduce the details of HPE. As men-
tioned there, the C(, ) and N have two settings respectively
for different levels evaluation. Consequently, we summa-
rize four metrics for comparison.

• Relative Pose Accuracy (RelAcc) : The accuracy of
relative pose prediction only considering the geometric
relationships similarity.

• Phrase Accuracy (PhrAcc) : The accuracy of phrase
prediction including the geometric relationships simi-
larity and the IoU of both subject and object.

• Relative Pose Accuracy based on image (RelAccI ) :
The accuracy of relative pose prediction with RelAcc
computed based on image.

• Phrase Accuracy based on image (PhrAccI ) : The
accuracy of phrase prediction with PhrAcc computed
based on image.

In the experiments, we use 2D ground truth boxes as in-
put. The thresholds of SLocθ , SLocl and SOri are 0.5, 0.5

2Note that the original Total3D implementation, as reported in Tab. 3
(“Total3D [27]”), has used the annotations from [8], which differs from
our reproduction “Total3D [27]*”.
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Figure 6. The results of 3D object detections on SUN RGB-D dataset. Each group of qualitative result contains three columns which are
the prediction of our baseline (Total3D [27]), our proposed method, and ground truth respectively.

Table 3. Comparisons of object pose estimation with the existing methods on NYUv2 dataset. Specifically, 3D-RelNet [20]* and Total3D
[27]* are our reproduced results with the same setting as ours for a fair comparison .

Method 3D Model Translation(meters) Rotation(degrees) Scale
Median Mean (Err≤ 0.5m) % Median Mean (Err≤ 30◦) % Median Mean (Err≤ 0.2) %

Supervision (lower is better) (higher is better) (lower is better) (higher is better) (lower is better) (higher is better)
Factored 3D [34] yes 0.49 0.62 51.0 14.6 42.6 63.8 0.37 0.40 18.9
3D-RelNet [20] yes 0.41 0.54 60.9 14.0 39.6 67.0 0.33 0.38 21.7
Total3D [27] no 0.48 0.61 51.8 14.4 43.7 66.5 0.22 0.26 43.7
3D-RelNet [20]* no 0.50 0.67 50.2 21.8 53.4 53.3 0.38 0.42 16.0
Total3D [27]* no 0.51 0.69 48.9 15.7 37.0 66.9 0.27 0.32 32.8
Ours no 0.43 0.57 57.7 14.3 36.7 68.0 0.25 0.30 37.0

Table 4. Comparisons of 3D box estimation on SUN RGB-D dataset. For each column, the left and right results denote the Acc and mIoU
individually.

Method Acc/mIoU bed chair sofa table desk dresser nightstand sink cabinet lamp
CooP [15] 37.77/13.70 74.82/28.6 33.87/13.2 57.59/19.9 50.95/18.0 42.28/14.4 29.13/9.6 20.95/7.9 24.36/9.7 25.95/9.3 17.84/6.4
Total3D [27] 49.42/18.27 80.33/30.5 43.74/17.4 68.54/24.9 61.93/22.8 53.93/19.2 44.34/15.9 39.13/14.6 45.89/17.2 36.90/12.6 19.46/7.6
Ours(w/o. HPG) 49.23/18.11 78.86/30.8 44.26/17.2 74.02/26.8 60.80/21.5 55.62/19.6 45.63/17.0 34.78/12.7 39.38/15.0 37.62/12.8 21.35/7.7
Ours 54.27/20.04 81.62/33.0 50.70/20.5 77.62/29.3 67.90/24.0 60.29/21.6 48.54/16.4 40.32/13.7 49.00/18.2 43.57/14.7 23.78/9.0

Table 5. Comparisons on SUN RGB-D dataset under the metrics
of HPE.

Method RelAcc PhrAcc RelAccI PhrAccI
CooP [15] 20.56 2.82 39.33 4.31
Total3D [27] 38.25 6.69 58.28 12.88
Ours 40.09 9.19 60.83 18.49

and 30◦ respectively. The IoU threshold of the 3D bound-
ing box is 0.15. As shown in Table 5, our method has
better performance than state-of-the-art methods, benefited
from modeling geometric structure explicitly with HPG.
It not only justifies the effectiveness of our method, but
also demonstrates that HPE further distinguishes the per-
formance of different methods from a holistic perspective
to analyze the rationality of scene layout.

5.5. Qualitative Experiments

We show some typical qualitative results of our method
and the baseline (Total3D [27]) on SUN RGB-D dataset.
The three rows in Figure 6 represent the improvements of
3D object prediction about location, scale, and rotation in-

dividually. It can be seen that our method predicts more
accurate 3D bounding boxes when there are more objects in
the scene. It proves that HPG can integrate more geometric
information to maintain a more reasonable scene layout.

5.6. Analysis of Graph Inference

We show some qualitative and quantitative results to an-
alyze the process of graph inference along HPG. In Figure
7, we visualize the process of dynamically updating the ob-
ject pose. After each message passing process, each object
will change its pose gradually to maintain a more reason-
able holistic geometric structure. We evaluate the process
of graph inference quantitatively in Figure 8, and observe
that the performance under each metric goes up with the
iteration increasing and becomes stable after about 3 itera-
tions of graph inference, as verified in both the qualitative
and quantitative results.

Besides, we further explore the impact of different sam-
ple rates of the graph edges by random sampling. The
results indicate that more edges, more constraints, lead to
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Figure 7. Visualization of the intermediate results during graph inference. T denotes the iterations of the message passing process.

higher performance (details in the supplementary material).

Figure 8. Quantitative intermediate results during graph inference
on all metrics.

5.7. Ablation Study

In this section, we mainly analyze the influences of the
Holistic Pose Graph and consistency loss. To better un-
derstand the contributions of each module, we ablate our
method with four settings in Table 6:
S0: Baseline method [27]
S1: Final model - HPG
S2: Final model - consistency loss
S3: Final model

Comparing S1 with S3: Under the setting of S1, we en-
code the relative pose but do not build HPG for graph infer-
ence. The results demonstrate that the key for performance
improvement is the HPG rather than only focusing on pair-
wise relations [20].

Comparing S2 with S3 and S1: The last four rows of
S2 are better than S1 because of the HPG improving the
performance about the relationships prediction. Compared

with S3, S2 discards the consistency loss, and thus the ob-
ject pose module and the relative pose module are trained
respectively, which causes the first three rows about the ob-
jects prediction with obvious gap between S2 and S3.

Comparing S0 with S2: The last four rows of S2 are
better than S0. It proves that modeling geometric structure
explicitly using HPG is a better way to leverage the rela-
tionships.

Table 6. Ablation studies of all metrics on SUN RGB-D dataset
[32]. mAP is the result of 3D object detection, mIoU and Acc
both correspond to 3D box estimation, and the last four rows are
evaluated on HPE.

Metric S0 S1 S2 S3

mAP 26.38 27.39 27.99 32.75
mIoU 18.27 18.11 18.41 20.04
Acc 49.42 49.23 49.58 54.27
RelAcc 38.25 33.79 40.48 40.09
PhrAcc 6.69 6.27 8.05 9.19
RelAccI 58.28 54.49 60.59 60.83
PhrAccI 12.88 12.17 16.43 18.49

6. Conclusion
We propose to model geometric structure among objects

in a scene using graph inference for 3D object prediction.
The experiments on SUN RGB-D dataset demonstrate that
Holistic Pose Graph is a better way to utilize the geomet-
ric relationships than existing methods, and the key to im-
proving the performance of the object prediction along with
the relationships prediction is our devised consistency loss.
Besides, we introduce Holistic Pose Estimation that further
evaluates the rationality of the scene layout based on con-
sidering the accuracy of independent object.
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